

Asset Management & GIS: Tools for Success

Types of Geographic Information Systems (GIS)

Many options, from free to expensive:

- ArcGIS Pro and ArcGIS Online
 - ESRI has a water utility management package
 ArcGIS Solutions >> Water Distribution Utility Network Foundation
- QGIS
 - Free, open-source version of GIS
- Google Earth
 - Good for basic mapping and drawing
- Commercial software to simulate operations, such as InfoWorks
 - \circ Fancy and expensive

Comparing GIS Software

	Software	ware										
Capability	Google Earth	Esri ArcGIS	QGIS									
Mapping	Yes	Yes	Yes									
Spatial Analysis	Limited	Yes, integrated	Yes, integrated or plug-ins									
Cost	Free/Paid	Paid	Free									
File and Database Support	Limited	Broad, easy to upload, can be hard to manipulate; ESRI Geodatabases	Broad (except for ESRI geodatabases), harder to upload, can be simpler to manipulate; PostgreSQL									
Online mapping*	Support through Google Maps or 3 rd party apps	Support through ArcGIS Online	Support through QGIS Cloud									
Integrated water utility analysis packages	No	Available packages (field operations, water utility data management)	Not directly designed or integrated									

Basic File Types

ullet

- Vector files: points, lines, polygons databases
 Assets, agency boundaries, streams or watersheds
- Raster files: pictures
 - Digital elevation models,
 climate data, land cover

Q	18 1	: / 🗮								
🕡 Information	Id	Name	Alas	Type	Type name	Length	Precision	Comment	WMS	WFS
2 Saure	• 🖽	MOD_DATE		QDate	Date	10	0			
Source .	1.2 1	Q_DESIGN		double	Real	18	11			
💱 Symbology	📰 z	ASBDATE		QDate	Date	10	0			
abe Labels	abc 3	UPDATED_BY		QString	String	10	0			Ø
🔥 Diagrams	abc 4	NAME		QString	String	50	0		Ø	Ø
••••••••••••••••••••••••••••••••••••	abc 5	MAINT_BY		QString	String	10	0			
JU VIEW	1.2 6	DIA_HGT		double	Real	18	11			
Source Fields	abc 7	DWGNO		QString	String	50	0			Ø
금 Attributes Form	abc 8	EQNUM		QString	String	50	0			
Joins	1.2 9	WIDTH		double	Real	18	11			
.	abc 10	ABAND		QString	String	50	0		Ø	
Auxiliary Storage	abc 11	X_SEC_SHP		QString	String	50	0			
Actions	abc 12	MATL		QString	String	100	0			
🧭 Display	abc 13	SUBTYPE		QString	String	50	0			

• Table files: data with spatial information

Coordinate Reference Systems

A Coordinate Reference System (CRS) defines how to project a flat map to the earth

Represents a 3D "real" map on a 2D "flat" map Hundreds of systems

GIS software needs to interpret the input from a file to map it

Mis-identified CRSs are a common source of error when mapping and processing data in GIS

Nasa.gov

QGIS Views: Map and Data Table

Mapping Storm Sewer Gravity Mains in LA County

GIS Files Store Data in an "Attribute Table"

Database Fields

Q Layer Properties - GravityMain Source Fields											
Q	12	. / 🔛									
🥡 Information	Îd	Name	Alias	Туре	Type name	Length	Precision	Comment	WMS	WFS	
Source	0 📰	MOD_DATE		QDate	Date	10	0				
W bource	1.2 1	Q_DESIGN		double	Real	18	11				
ኛ Symbology	2	ASBDATE		QDate	Date	10	0				
(abc Labels	abc 3	UPDATED_BY		QString	String	10	0				
🎽 Diagrams	abc 4	NAME		QString	String	50	0				
	abc 5	MAINT_BY		QString	String	10	0				
SD View	1.2 6	DIA_HGT		double	Real	18	11				
Source Fields	abc 7	DWGNO		QString	String	50	0				
吕 Attributes Form	abc 8	EQNUM		QString	String	50	0				
• 🦪 Joins	1.2 9	WIDTH		double	Real	18	11				
	abc 10	ABAND		QString	String	50	0				
Auxiliary Storage	abc 11	X_SEC_SHP		QString	String	50	0				
Sections	abc 12	MATL		QString	String	100	0				
🧭 Display	abc 13	SUBTYPE		QString	String	50	0				

Data Tables

Record: A row in a table of data

1	🗟 🗟 💼	-< n n 5	= 🖸 🖪 🔫 🖷			R.								
				• 💎 🛩 i 📖 ii	3 🕮 📰 💷 🤘	K.								
	MOD_DATE	Q_DESIGN	ASBDATE	UPDATED_BY	NAME	MAINT_BY	DIA_HGT	DWGNO	EQNUM	WIDTH	ABAND	X_SEC_SHP	MATL	SUBTYPE
	2009-12-14	9999.00000000000	1971-02-01	HM	SYCAMORE CA	LACFCD	168.0000000000	40-D24	F01000308	192.0000000000	No	Square or Recta	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	HM	BI 0433 U2	LACFCD	36.0000000000	275-433-D5	F01000169	0.00000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	HM	BI 0433 U2	LACFCD	36.0000000000	275-433-D5	F01000169	0.00000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	HM	BI 0433 U2	LACFCD	36.0000000000	275-433-D5	F01000169	0.0000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.0000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	36.0000000000	275-433-D5	F01000169	0.0000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	72.0000000000	275-433-D5	F01000169	0.00000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	87.00000000000	275-433-D5	F01000169	0.00000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	72.0000000000	275-433-D5	F01000169	0.00000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	72.0000000000	275-433-D5	F01000169	0.00000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	36.0000000000	275-433-D5	F01000169	0.0000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	36.00000000000	275-433-D5	F01000169	0.00000000000	No	Round	Reinforced Con	Standard
	2009-12-28	9999.00000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	36.0000000000	275-433-D5	F01000169	0.0000000000	No	Round	Reinforced Con	Standard
	2010-02-25	0.00000000000	1969-11-12	MLO	PD 0896	LACFCD	24.0000000000	355-F13	F01000582	0.0000000000	No	Round	Reinforced Con	Standard
	2010-02-25	999.0000000000	1958-01-01	ST	MCKINLEY DRA	LACFCD	66.0000000000	272-F1	F01003049	0.0000000000	No	Round	Reinforced Con	Standard
	2010-02-25	0.00000000000	1958-01-01	ST	MCKINLEY DRA	LACFCD	102.0000000000	272-F1	F01003049	0.0000000000	No	Double Box	Reinforced Ce	Standard
	2009-12-28	9999.0000000000	1969-06-20	НМ	BI 0433 U2	LACFCD	87.0000000000	275-433-D5	F01000169	0.0000000000	No	Round	Reinforced Con	Standard
	2010-02-25	999.0000000000	1958-01-01	ST	MCKINLEY DRA	LACFCD	66.00000000000	272-F1	F01003049	0.00000000000	No	Round	Reinforced Con	Standard
	2010-02-25	0.00000000000	1958-01-01	ST	MCKINLEY DRA	LACFCD	102.0000000000	272-F1	F01003049	0.0000000000	No	Double Box	Reinforced Ce	Standard
	2010-03-01	72.30000000000	1961-01-01	KS	PD 0263	LACFCD	33.00000000000	6-F679	F01001424	0.0000000000	No	Round	Reinforced Con	Standard
	2010-03-01	94.90000000000	1961-01-01	KS	PD 0263	LACFCD	42.00000000000	6-F679	F01001424	0.00000000000	No	Round	Reinforced Con	Standard
	2010-03-01	72.30000000000	1961-01-01	KS	PD 0263	LACFCD	42.00000000000	6-F679	F01001424	0.00000000000	No	Round	Reinforced Con	Standard
	2010-03-01	94.90000000000	1961-01-01	KS	PD 0263	LACFCD	42.00000000000	6-F679	F01001424	0.00000000000	No	Round	Reinforced Con	Standard
	2010-03-01	150.40000000000	1961-01-01	KS	PD 0263	LACFCD	42.00000000000	6-F679	F01001424	0.00000000000	No	Round	Reinforced Con	Standard
	2010-03-01	150.40000000000	1961-01-01	KS	PD 0263	LACFCD	42.00000000000	6-F679	F01001424	0.00000000000	No	Round	Reinforced Con	Standard

Field: A column in a table that stores the value of a single attribute

Water Utility Management Using GIS

QGIS can support:

- Utility system mapping
- Asset management
- Watershed analysis
- Rate studies

Not "plug-and-play"

Add-Ons

QGIS allows its community of developers to build add-on packages for specific needs Can become part of the regular functions

Some recent packages are designed to assist with utility management needs

Qwater: integration with EPANet, drainage planning *SAGA Terrain Analysis – Hydrology:* watersheds *Qfield:* Field data collection

Web searches of "QGIS" and keywords for a task can find blogs and posts with solutions from the QGIS community

Example Asset Management

Storing utility assets in GIS databases

Ways to classify assets

- Location
- Size, length, depth, material
- Condition

Features	Possible attributes (fields) for each asset
Asset # 1 2 3 	Age Length, depth, size Location (GPS coordinates, latitude/longitude) Material Condition Cost or value Ownership Type

Application: Collecting Field Data for Asset Management

Application: Uploading Data for Asset Management

Field Data

Collected via field surveys or a mobile app

l	م	c) - 🐧 -							с	UPSS DataEx	port.csv - E	xcel					Po	rse, Erik	T –		×
F	ile Ho	me Inse	ert Draw	Page Li	ayout F	ormulas	Data Re	eview Vi	ew Help	o Acroba	at QTe	ell me what	you want to (do						۶ A	hare
Pa	Lipboan	ny ▼ mat Painter d ⊡	Calibri B I U	+ 1 1 + ⊞ + Font	11 - A		= 82 • = = = = AI	란 Wra 트 변 Men ignment	ip Text ge & Cente	Gener r ∓ \$ ∓	nal %	▼ 00 →.0 Fo	onditional Fo prmatting ▼ Sty	ormat as C Table * Sty yles	ell Inser	t Delete For	rmat ✓	AutoSum Fill - Clear - Ed	Sort & Fin Filter * Se	O nd & lect ≁	~
A	A1 • : X fx AssetName*																				
	А	В	С	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R	S	т	
1	AssetNam	Location*	AssetCate	OtherAsse	AssetTyp	OtherAsse	AssetID	AssetSize	AssetMate	Longitude	Latitude	Notes	StorageCa	LinearFee	AcresOfLa	Condition	Redundar	AssetStat	Capacity*	CoF*	Ca
2	Lot 10 BR	Lot 10	Treatment	t	Other	LID	L10BR2	3750	Weeds/De	-121.422	38.55403				1	Poor	0%	Active	Fullsized	Minor	Y
3	Lot 10 BR	Lot 10	Treatment	t	Other	LID	L10BR2	3750	Weeds/De	-121.422	38.55403				1	Poor	0%	Active	Fullsized	Minor	Y
4	CTD-RG-4	College To	Treatment	t	Other	LID	CTD-RG-4	375	Vegetatio	-121.423	38.5556		20	40	1	Fair (Aver	0%	Active	Fullsized	Insignific	ca Y
5	CTD-RG-3	College To	Treatment	t	Other	LID	CTD-RG-3	375	Vegetatio	-121.424	38.55594		20	40	1	Fair (Aver	0%	Active	Fullsized	Insignific	ca Y
6	LG-RG-2	Library Gr	Treatment	t	Other	LID	LG-RG-2	375	Vegetatio	-121.424	38.56065		20	40	1	Fair (Aver	0%	Active	Fullsized	Insignific	ca Y
7	Lot 7-BR-1	Lot 7	Treatment	t	Other	LID	L7-BS-1	3750	Weeds/De	-121.42	38.55448				1	Poor	0%	Active	Fullsized	Minor	Y
8																					
^	CUPSS DataExport																				
Rea	eady																				

Where Can I Find Data?

Local and state GIS repositories

Administrative boundaries (e.g. cities, counties, districts, sectors etc...) Infrastructure information (e.g. dams, levees, water/wastewater treatment plants)

US Census Tiger datasets

Census Blocks National Geodatabase

U.S. federal agencies, such as U.S. Geological Survey

Public-Supply Well Water Quality Results Flood inundation maps

More Information

• Environmental Finance Center Network

SWEFC: "Asset Management 101":

https://swefcamswitchboard.unm.edu/am/product/asset-management-101-2/

EFC-Network provides technical assistance https://efcnetwork.org/get-help/

- Rural Community Assistance Corporation (RCAC) https://www.rcac.org
- American Water Works Association (AWWA)

https://www.awwa.org/Resources-Tools/Resource-Topics/Asset-Management

https://www.efc.csus.edu/

Erik Porse OWP at Sacramento State | UCLA erik.porse@owp.csus.edu

Asset Management: Some Terms

• Asset Inventory: Detailed data on components of a system and condition

• <u>Level of Service</u>: Maintenance and replacement targets to provide a reliable system for residents

An asset inventory is key to sustainable management and financial planning

An Example Asset Inventory

Example of an Asset Inventory for a Water Treatment Plant

Process Unit	Number of Units	Approximate Date of Installation	Typical Lifespan (Years)	Remaining Life Span (as of 2011)	Approximate Replacement Cost or Original Cost (Unit Cost)	Total Cost	Current Replacement Cost/Remaining Life in Years
RAWI	WATER PUM	PSTATION					
450gpm/25 hp Raw Water Intake Pump/Motor	2	1992	10 - 15	10	14,000	28,000	2,800
Raw Water Vacuum Pump	1	2000	3	1	1,500	1,500	1,500
Intake and Raw Water Line (600 feet of 10" PVC Pipe with concrete casing)	1	1992	35 - 45	15	45,000	45,000	3,000
Transmission Line from Pump Station to SWTP (~3,100 feet of 8" PVC C900 Pipe)	1	1992	35 - 40	20	22,500	22,500	1,125
		SURFACE	WATER TR	EATMENT PL	ANT		
Ozone System:							
Ozone Contactor Tower	1	1992	30 - 60	10	320,000	320,000	32,000
Ozone Generator (25 lbs/day)	2	1992	10 - 15	1	125,000	250,000	250,000
Air Compressor	2	1992	10 - 15	1	20,000	40,000	40,000
Air Dryer	2	1992	10 - 15	1	20,000	40,000	40,000
Ozone off-gas Destruction Unit	1	1992	10 - 15	1	35,000	35,000	35,000
Ozone alarm system	1	1992	5 - 10	2	52,000	52,000	26,000
Coagulant Feed System:							
Chemical Feed Pump (14.4 gal/day)	2	2005	5 - 10	3	3,500	7,000	2,333
Chemical Feed Day Tank	1	1992	10 - 15	10	15,000	15,000	1,500
	\langle		<			\langle	
			-			Needed CIP/yr	\$ 1,259,19
						Needed CIP/(mo*600 conn)	\$ 17

Rate Structures & Funding

- Rate structures influence funding
 - "Lumpy" budgets
 - In dry climates, drought and seasonal fluctuations can affect revenue
 - Wintertime monthly flow
 estimates can provide a
 reasonable approximation of
 indoor use

Why is Prioritization Important?

• Prioritizing assets helps mitigate failure risks

Why is Prioritizing Important?

• Prioritizing assets helps mitigate failure risks

Big Equipment Failure

Need Reserves!

Time

Tracking Progress & Adaptive Management

Review and Update

- Assets
- Asset Characteristics
- LOS goals
- Life Cycle Costs
- Funding/Financing Plan

A free and open-source version of GIS software

Created over many years by a community of developers

Under continual improvements

Asset Management for Small Systems: Tools Available

Additional Resources for Asset Management

Many options available online to help you...

- Continue learning about asset management
- Assessing assets
- Developing a strategy and writing an AM plan
- Financial planning
- Program review

Learning Resources and Additional Trainings

AM Kan Work!

 Online guidebook to help water and wastewater utilities assess the status of their operations and develop strategic plans for sustainable service

Resources available:

- Training videos
- Example forms for LOS, criticality assessments, maps, etc.

SOUTHWEST ENVIRONMENTAL FINANCE CENTER

AM Kan Work!

- Asset Management IQ
 - self evaluation tool to help assess progress in Asset Management activities

EPA Handbook: Asset Management for Small Systems

 Presents the basic concepts of asset management and provides the tools to develop an asset management plan.

Resources available:

- Step by step guide
- Worksheets for LOS, asset inventory, criticality assessments, maps, etc.

Asset Management: A Handbook for Small Water Systems

One of the Simple Tools for Effective Performance (STEP) Guide Series

EPA Handbook: Asset Management Best Practices

• Not specifically for small systems but a good overview of questions systems should ask when developing an AM plan

Past EFCN Webinars on Asset Management

• Intermediate Asset Management Series

- Asset Inventory and Mapping
- Level of Service
- \circ Criticality
- \circ Life Cycle Costing
- Ask the Expert Asset Management

Upcoming EFCN Webinars

Intermediate Asset Management Series

- Asset Inventory and Mapping
- \circ Level of Service
- \circ Criticality
- Life Cycle Costing
- Ask the Expert Asset Management

Developing an Asset Management Plan

EPA's Taking Stock of Your Water System

Guidebook walks through the developing a simple asset inventory

 \bullet

 Different elements of water systems, typical life expectancies, and criticality assessments

Elements of a Simple Asset Inventory

A note to the users of this brochure: It's quite likely that all of the details of the asset management plan presented in this brochure will not apply to every small drinking water system. You should feel free to modify the worksheets and plan so they conform to the particular needs of your system. Help in using this document, conducting asset inventories, and preparing future plans is available from your State or Tribal Drinking Water Primacy Agency.

EPA's Taking Stock of Your Water System

 Includes completed examples of asset inventory

Distribution System: Completed Example

You may want to note the location of shut-off valves to isolate particular sections of the system in case of an emergency.

You may also want to note the location of "as-built" drawings showing the layout of the distribution system.

If your system has many types of pipe (e.g., different size, different material), reproduce this worksheet and list the information for each type.

Look at receipts or records from the time of installation for the following information:

vc	3-inch	2,200 feet
ype of Pipe	Size	Length (feet)

Where Used or Located

Main St. Line

Remember that maintenance, water quality, use, and soil conditions can affect useful life. Subtract estimated age from adjusted useful life to determine remaining useful life.

Adjusted Useful Life	-	Estimated Age	=	Remaining Useful Life							
35 years	-	21 years old	=	14 years							
Whom would you call to service your pipes?											
Company/Agency	Contact		Telephone Number								
Chris' Contracting	Chris C	arpenter	(555) 123-4567								
Date Worksheet Completed or Revised											
3/1/04											

Remember that the typical useful life of pipes is 35

years. In this example, the system has estimated that the adjusted useful life will be the same as the

vpical useful life because in the past its distribution

system pipes have lasted for the typical number of

Preparations for Pipe Installation in a Distribution System

West Virginia's Asset Management for your Water System

guidance to aid water systems to complete an Asset Management plan broken into three separate parts: Basic, CUPSS, and Advanced

Resources available:

- utility self-assessments, tables, worksheets, and templates
- Excel-based templates are routinely updated

EPA Handbook: Asset Management for Small Systems

Presents the basic concepts of asset management and provides the tools to develop an asset management plan.

Resources available:

- Step by step guide
- Worksheets for LOS, asset inventory, criticality assessments, maps, etc.

Asset Management: A Handbook for Small Water Systems

One of the Simple Tools for Effective Performance (STEP) Guide Series

Fiscal Sustainability Plan Tool

Thank you for attending!

Maureen Kerner, *Office of Water Programs* **EFC Associate Director**, **PE**

Maureen.kerner@owp.csus.edu

Ella Ban, Office of Water Programs Environmental Specialist Ella.ban@owp.csus.edu

Caitlyn Leo, Office of Water Programs Research Engineer Caitlyn.leo@owp.csus.edu

Slides will be available online at: https://www.efc.csus.edu/

Environmental Finance Center "Get Help" Link:

https://efcnetwork.org/get-help/

• Follow link to request additional free services

Environmental Finance Center Upcoming Webinars Link: https://efcnetwork.org/training-events/

- Southwest Environmental Finance Center (SW EFC 2022).
 <u>A.M. KAN Work An Asset Management and Energy Efficiency Manual.</u> Accessed 2022.
- U.S. Environmental Protection Agency (USEPA 2020).
 <u>Sustainable Water Infrastructure: Asset Management for Water and Wastewater</u> <u>Utilities</u>. Accessed March 2020.
- US. Environmental Protection Agency (USEPA undated). Asset Management 101. undated.