

Asset Management for Small Waste Water Systems in California

Wednesday, September 14 2022

This program is made possible under a cooperative agreement with US EPA.

www.efcnetwork.org

Certificate of Completion

This training is pending CEU credit approval.

We are happy to provide certificates to registered attendees, but cannot guarantee that you will be able to get specific PDH or CEU credit.

- You must attend the entire session
- You must register and attend using your real name and unique email address group viewing credit will not be acceptable
- You must participate in polls
- Certificates will be sent via email within 30 days and are for your personal records. Again, we cannot guarantee that our webinars will meet your CEU or PDH requirements.

If you have questions or need assistance, please contact <u>smallsystems@syr.edu</u>.

About Us

The Environmental Finance Center Network (EFCN) is a

university-based organization promoting innovative and sustainable environmental solutions while bolstering efforts to manage costs.

Building TMF Capacity for Small Water Systems

Our Building Technical, Managerial, and Financial Capacity Programs for Small Water and Wastewater Systems provide free training and technical assistance across every state, territory, and tribal nations. Technical assistance is available on a first-come, first-served basis.

The Small Systems Water and Wastewater Teams

SOUTHWEST ENVIRONMENTAL FINANCE CENTER

OF PUBLIC AFFAIRS

Environmental Finance Center

Michigan Technological University

RESEARCH FOUNDATION

Small System Training Available!

https://efcnetwork.org/training-events

- Asset Management
- Financial Planning
- Building Resilience
- Controlling Energy Costs
- Access to Funding Sources
- Mapping & Data Collection
- Regulatory Compliance
- Operator Certification

- Strategic Planning Tools
- Effective Communication
- The Power of Partnerships: Sharing Resources with Neighboring Systems
- Attracting & Retaining Workforce
- Rate Setting & Affordability
- Basic Water Math

Technical Assistance Available!

https://efcnetwork.org/get-help/

- Adaptation & Resiliency Planning
- Asset Management
- Community Engagement
- Data Collection & Analysis
- Maintenance Practices
- Disseminating Information
- Fiscal Planning
- GIS Programming/Planning

- Infrastructure Funding
- Infrastructure Planning & Design
- Operator Training & Certification
- Management/Board Support
- Rate Payer/Citizen support
- Sustainability & Resiliency
- Partnerships & Collaboration
- Water Efficiency & Reuse
- Work Force Development

Asset Management

Asset Management: Answering the Questions

- What is asset management?
- Why do it?
- What's involved?
- How do I get started?
- What then?
- Are there examples to share? Yes!

We'll take breaks 45 minutes (or so)!

Asset Management: What is it?

Simply put...

https://swefc.unm.edu/home/amkan/Chapter1Videos/IN-2.m4v

The Car Analogy

- Flat Tire Options
 - \circ Fix tire
 - \circ New tire
 - \circ New car
 - \circ Used car
- Cracked Engine Block Options
 - \circ Fix engine
 - \circ New engine
 - \circ New car
 - \circ Used car

ne-np.facebook.com, bankrate.com

Some Definitions...

A method for maintaining a system's <u>assets</u> at a desired <u>level of (customer)</u> <u>service</u> at the <u>most appropriate cost</u>

- <u>Assets</u>: What you have that has value
- <u>Level of service</u>: What you want your asset to provide
- Most appropriate cost: Lowest life cycle cost (not free!)

EPA's Definition

USEPA (2020)

A process "utilities can use to make sure that planned <u>maintenance</u> <u>can be conducted</u> and capital <u>assets</u> (pumps, motors, pipes, etc.) <u>can</u> <u>be repaired, replaced, or upgraded on time</u> and that there is <u>enough</u> <u>money to pay for it.</u>"

EPA's Five Core Components

5. Long Term Funding

How are you going to pay for it all?

4. Life Cycle Costs

How much will it cost for O&M (including asset replacement)?

1. Asset Inventory

What assets do you have & what is their condition?

2. Level of Service

What are the service goals for your system?

3. Criticality

Which are the most important assets to maintain?

EPA's Five Core Components

https://www.youtube.com/watch?v=BgfFtV9mLJ0

Asset Management: Why do it?

Lots of Competing Demands

- Regulatory compliance
- Cost efficiency
- Health & safety
- Resiliency
- Investment decisions
- Long-term planning
- Risk management
- Services & outputs

- Efficiency & effectiveness
- Communication
- Aging infrastructure
- Competition for funding
- Upgrading outdated tech

Lots of Decisions

- What are the benefits of a project?
- What are the risks of not doing the project?
- What do customers really want?
- What financing is available for a project?
- Does a project meet a critical need?
- How do we prioritize projects?
- What is the best expenditure of funds?
- What are the alternatives?

	, Ö	\$
?	2	~

A basis for making good decisions

- Asses, Document, & Communicate
 - Assets owned
 - How long they will last
 - Repair/Replacement Costs
 - Revenue sufficiency

INFORMED DECISION-MAKING

A Guide for:

- Tracking O&M
- Prioritizing O&M Needs
- Planning for Replacements
- Estimating Costs
- Selecting Funding/Financing Options
- Communicating Intent, Plans, & Progress

Experiences

https://swefc.unm.edu/home/amkan/Chapter1Videos/IN-12.m4v

In Summary, Asset Management...

- Addresses multiple needs
- Makes management decisions easier
- Directs spending to achieve desired results

And one more thing...

Complies with Regulations

US, WRRDA (2014)

- Requires utilities seeking CWSRF loans to develop Fiscal Sustainability Plans (FSPs)
- FSPs include many components of Asset Management Plans (AMPs)

UT, HB0269 (2022 – UT only):

- Utility must adopt a capital AMP to receive funding for infrastructure improvements
- AMPs should follow EPA guidance for FSPs
- Utility must submit data for EPA 2022 Clean Water Needs Survey by 12/31/22

Questions?

Asset Management: What's involved?

Five Core Components...Five Steps

- 1. Build an Asset Inventory
- 2. Define Level of Service Goals
- 3. Identify Critical Assets
- 4. Estimate Life-Cycle Costs
- 5. Evaluate Long-Term Funding/Financing

Five Components...Five Steps...Common Sense

https://swefc.unm.edu/home/amkan/Chapter1Videos/IN-3.m4v

Step 1: Build an Asset Inventory

- More Questions
 - What assets do we have?
 - Where are they located?
 - What's their condition?
 - What's the expected remaining life?
 - What's their energy use?
 - What's their value?
 - How do I organize all this?!

What assets do we have?

How do we define Assets?

- Use a dollar amount threshold
- Whether it requires a work order

\$500? \$1000? \$3000?

Asset

Component

Selecting Assets

https://swefc.unm.edu/home/amkan/Chapter3Videos/IV-2.m4v

https://swefc.unm.edu/home/amkan/Chapter3Videos/IV-3.m4v

Where are the assets located?

- Create a visual picture
 - Hand drawn maps
 - Google Maps
 - o GIS Systems

Where are the assets located?

- Data Sources
 - Existing Knowledge
 - As Builts/Maps
 - Operators
 - New Knowledge
 - Site Visits
 - GPS Devices

Where are the assets located?

https://swefc.unm.edu/home/amkan/Chapter3Videos/IV-4.m4v

What's their expected remaining life?

Remaining Life = Estimated Useful Life - Age

- Age & useful life are good starting points
- Then consider site-specific conditions (usage, install, material quality)

Wastewater:	Useful Life, Years	
Gravity Sewer Lines	80-100	
Manholes	20-50	
Pumping Station Structures	50	
Pumping Station Electrical	15	
Risers	25	
Treatment Plant Structures	50	
Treatment Plant Electrical	15-25	

What's their condition?

Condition Monitoring Approaches

- Vibration
- Temperature
- Power or Oil Use
- Efficiency Change
- Run Time
- TV Inspection
- Pressure Testing
- Leak Testing
- Visual Inspection
- Life Expectancy Review

Rating Conditions

Rating	Condition Description	Age Description
Excellent	New or fairly new; No known or suspected issues	>90% of useful life remaining
Very Good	No known or suspected issues, but no longer a new asset	75-89% of useful life remaining
Good	A few known or suspected issues	40-74% of useful life remaining
Fair	Known/suspected issues that may impact asset's ability to continue to perform in the next several years	5-34% of useful life remaining
Poor	Known/suspected issues that may impact asset's ability to continue to perform in the next 1-2 years	<5% of useful life remaining

What's their monetary value?

- Historic Value
 - Cost at install
- Current Value
 - Depreciation
- Replacement Value
 - Cast iron pipe vs PVC
- Asset vs system replacement

Description	Cost
Influent Box and flow Meter	\$250,000
Screening Facility	\$800,000
Grit Removal Facility	\$850,000
Flow Distribution Structure	\$150,000
Lagoon Upgrades	\$600,000
Odor Control	\$250,000

Cost resources

- Recent utility projects
- Neighboring utilities
- Publications

How do I organize all this?!

- Multiple formats
 - o Paper
 - Spreadsheets
 - Commercial Product

Questions?

"It's a great thing to break."

-James Taylor

Five Core Components...Five Steps

- 1. Build an Asset Inventory
- 2. Select a Level of Service
- 3. Identify Critical Assets
- 4. Estimate Life-Cycle Costs
- 5. Evaluate Long-Term Funding/Financing

What is Level of Service?

"...the quality or expected reliability that must be provided...

to meet a community's basic needs and expectations"

-Grand Rapids, MI 2016

Level of Service Agreement

- Benefits
 - Communicates operation to the customers
 - Assists in identifying critical assets
 - Provides a means of assessing overall utility performance
 - Provides a direct link between costs and service
 - Serves as an internal guide for management and operations staff
 - Communicates energy efficiency and water conservation goals

The LOS Process

- Identify SMART Goals
- Involve Customers & Staff
- Track Progress

Establishing Levels of Service for Your Utility

Source: Georgia Association of Water Professionals

Develop Goals

- Goal Categories
 - Energy Efficiency
 - Water Efficiency/Conservation
 - Social Considerations
 - Environmental Considerations
 - Customer Service
 - Regulatory Requirements

LOS

<u>Maximum Level</u> = Highest capabilities of all assets

Minimum Level: Meet all regulatory requirements

Internal & External Goals

Internal

- Don't impact customers
- Set by utility staff
- Examples
 - Maintenance Scheduling
 - Energy Efficiency

External

- Impact customers
- Set with customer input
- Examples
 - Response for sewer back-ups
 - Response time for other customer complaints

SMART Goals

Specific	Details exactly what needs to be done
M easurable	Achievement or progress can be measured
Achievable	Objective is accepted by those responsible for achieving it
Realistic	Objective is possible to attain (important for motivational effect)
Time Bound	Time period for achievement is clearly stated

https://www.assetivity.com.au

Examples of SMART Goals

- Fewer than 5 odor complaints per quarter related to WWTP
- Minimum water pressure of 50 psi throughout system, 95% of the time
- Customer service line available from 8 am 5 pm, 5 days per week
- Customer complaints addressed within 1 business day, 95% of the time
- Fewer than 2 sewer backups per month
- 75% planned maintenance, 25% reactive maintenance
- Reduce energy consumption by 10% at the wastewater treatment plant

An LOS Worksheet

LOS Goal	Criteria Assessment
System will meet all State and Federal regulatory standards.	Is it measurable? <i>Yes</i> How will it be measured? Compliance reports How often will it be measured? <i>Monthly</i>
Less than 10 odor complaints per year.	Is it measurable? <i>Yes</i> How will it be measured? <i>Review of customer complaint logs</i> How often will it be measured? <i>Annually</i>
Less than 4 sewer backups a year.	Is it measurable? <i>Yes</i> How will it be measured? <i>Review of work order logs</i> How often will it be measured? <i>Annually</i>

Involve Customers

- Door to door
- Annual meetings
- Focus groups
- Surveys
- Internet polls
- Social networking
- Customer call/complaint logs

https://swefc.unm.edu/home/amkan/Chapter4Videos/LS-1.m4v

Balancing LOS & Cost

- Higher LOS: Costs
- Customer willingness to pay

https://swefc.unm.edu/home/amkan/Chapter4Videos/LS-6.m4v

Tracking Progress

• Consider these questions:

- How frequent will the data I need be available?
- How much time will it take to get the data for tracking?
- How often do I need to report this type of information to elected officials or the board?
- How often do I need to communicate with my customers on meeting this goal?
- How often will it be possible to make adjustments if I find I'm not meeting the goal?

Questions?

Five Core Components...Five Steps

- 1. Build an Asset Inventory
- 2. Select a Level of Service
- 3. Identify <u>Critical Assets</u>
- 4. Estimate Life-Cycle Costs
- 5. Evaluate Long-Term Funding/Financing

Critical Assets

• High Risk of Failure

Probability of Failure (condition or age)

Consequence of Failure (major expense, system failure, safety concerns)

- Questions to ask
 - \odot How can assets fail?
 - How do assets fail?
 - What is the likelihood (probability) of failure?
 - \odot What are the consequences of failure
 - \odot What are the cost for repairing/replacing the asset?
 - \odot What are other associated costs?

Probability of Failure

- Modes of Failure
 - Mortality: asset physically fails through collapse, rupture, or otherwise
 - <u>Financial Inefficiency</u>: asset costs so much to operate and maintain that it is no longer economical to keep it in operation
 - <u>Capacity</u>: asset still operates, but not at the capacity needed
 - <u>Level of Service</u>: asset still operates, but doesn't meet the required LOS

Probability of Failure

- Factors & Ratings
 - Asset Age
 - Asset Condition
 - Repair History
 - O&M History
 - Historical Knowledge
 - Experience

1	Very Low
2	Low
3	Moderate
4	High
5	Very High

Consequence of Failure

- Factors & Ratings
 - Cost of repair/replacement
 - \circ Social impacts or costs
 - Environmental impacts or costs
 - Costs/impacts related to collateral damage from failure
 - \circ $\;$ Legal costs associated with asset failure
 - Public health impacts or costs
 - \circ $\,$ Reduction in Level of Service
 - Any other costs or impacts related to the asset failure

1	Very Low
2	Low
3	Moderate
4	High
5	Very High

Redundancy Reduces Risk

https://swefc.unm.edu/home/amkan/Chapter5Videos/CR-9.m4v

Risk of Failure

- Probability of Failure (POF)
 - o Remaining life
 - Structural condition
- Consequence of Failure (COF)
 - General rating (negligible, moderate, high)
 - Depth & size of asset (influences cost of replacement)
 - Proximity to important community features:
 - o (floodplains, environmental hazards, buildings, roadways)
- Redundancy (R)
 - Duplicate asset serving as back-up

Risk = POF x COF x R

Identify Critical Assets based on Risk

Consequence of Failure (COF)

Moderately High Risk	High Risk
(I)	(II)
Low Risk	Moderately Low Risk
(III)	(IV)

Probability of Failure (POF)

Criticality and Energy Use

• Factors

- Meets Energy Efficiency Goals
- Energy Use
- Renewable Source of Energy
- Potential Alternatives
- o Costs
- Availability of Funding/Financing/Rebate
- Operability
- o Regulatory Requirements

1	Very Low Energy Use
2	Low Energy Use
3	Moderate Energy Use
4	High Energy Use
5	Very High Energy Use
1	Very Low Feasibility
1 2	Very Low Feasibility Low Feasibility
1 2 3	Very Low Feasibility Low Feasibility Moderate Feasibility
1 2 3 4	Very Low Feasibility Low Feasibility Moderate Feasibility High Feasibility

Questions?

Five Core Components...Five Steps

- 1. Build an Asset Inventory
- 2. Select a Level of Service
- 3. Identify Critical Assets
- 4. Estimate Life-Cycle Costs
- 5. Evaluate Long-Term Funding/Financing

Cost Types

- Initial cost of installation
- 0&M
- Repair/Rehab/Replacement
- Disposal
- Legal, environmental, or social costs
- Debt

O&M Costs: Degrees of O&M

• Reactive:

Meet maintenance and repair needs as they arise

• Preventive:

Proactively undertake system maintenance and renewal activities prior to failures

• Mixed:

Assign some assets reactive maintenance & others preventive

O&M Costs: O vs M

• Operations

• Standard procedures

performed on a routine basis

• Alternate procedures

performed in response to planned maintenance/repair

• Emergency procedures

performed in response to failure or natural disaster

• Documented in an O&M Manual
O&M Costs: O vs M

• Maintenance

- Routine: *performed on a regular basis*
- Planned: planned, in lieu of responding to failure/crisis
- Preventative: *performed to prevent failure*
- Warranty-Related: *required by manufacturer*
- Corrective: *performed in response to failure*
- Monitoring
- Documented in some way: *written, software, CMMS*

O&M Costs: Questions

- What am I currently doing that I need to continue?
- What am I currently doing that I need to discontinue?
- What am I not doing that I need to start doing?
- What am I not doing that should stay that way?

O&M Costs: Based on Risk

of Failure Consequence c (COF)

Moderately High Risk	High Risk
Preventative or Mixed O&M	Preventative O&M
Low Risk	Moderately Low Risk
Reactive or Mixed O&M	Preventative or Mixed O&M

Probability of Failure (POF)

Asset Repair, Rehab, or Replacement

- Consider:
 - \circ Condition
 - Capital costs
 - O&M costs
 - Remaining useful life
 - o Decay pattern
 - \circ Criticality
 - Energy Use
 - Impact on LOS

Asset Repair, Rehab, or Replacement

https://swefc.unm.edu/home/amkan/Chapter6Videos/LC-12.m4v

Capital Improvement Planning

- Reasons for new assets
 - Replacement/Rehab
 - Future regulations
 - \circ Growth
 - Consolidation/ regionalization
 - Improve technology

Capital Improvement Planning

- Contents
 - Project descriptions
 - Project needs & benefits
 - Project cost
 - O&M costs
 - Funding sources
 - Impact on LOS

Questions?

Five Core Components...Five Steps

- 1. Build an Asset Inventory
- 2. Select a Level of Service
- 3. Identify Critical Assets
- 4. Estimate Life-Cycle Costs
- 5. Evaluate Long-Term Funding/Financing

Compare Revenue to Life Cycle Costs

USEPA, undated

Funding Sources

Capital Projects:

Internal/External Funding:

Grants

Loans

Special Funds

Bonds

O&M:

Internal Funding:

Taxes

Customer Fees

Impact Fees

Customer Rates

External Funding: Capital Improvements

Asset Management helps in grant/loan applications

https://swefc.unm.edu/home/amkan/Chapter7Videos/FS-2.m4v

Internal Funding: Rate/Fee Structures

- Account for:
 - O&M costs
 - Debt service
 - Emergency operations
 - (Some) capital improvements
- Build reserves
- Be affordable to customers
- Include incremental increases
- Build (rate) capacity

Rates Should...

• Cover costs for O&M, capital projects, and debt

https://swefc.unm.edu/home/amkan/Chapter7Videos/FS-5.m4v

Rates Should...

• Build reserves

https://swefc.unm.edu/home/amkan/Chapter7Videos/FS-8.m4v

Building Rate Capacity

https://swefc.unm.edu/home/amkan/Chapter7Videos/FS-9.m4v

Comprehensive Funding Strategies

- Demonstrate O&M revenue source & adequacy
- Specify CIP funding sources
- Include debt repayment
- Define revenue source for increased O&M
- Account for inflation
- Anticipate rising energy costs & identify funding
- Balance L&M costs with CIP costs
- Support community sustainability

Questions?

"Taking a break can lead to breakthroughs."

-Russell Eric Dobda

Asset Management: How Do I Get Started?

Start Simple: A Fiscal Sustainability Plan

- Very simple Asset Management Plan
- Required for WRRDA
- Contents
 - Inventory of critical assets
 - A plan for maintaining, repairing, and replacing the treatment works
 - A plan for funding the activities
 - An evaluation and implementation of water and energy conservation efforts

FSP Example: City of Biggs, CA

- Asset Inventory Approach
 - Evaluating expected lifetimes for each asset
 - Estimating replacement costs for each asset
 - Calculating annualized cost of replacement
- Critical Assets
 - Upon failure, significantly affect operation of the WWTP or land disposal system; or
 - \circ Have an estimated remaining life of \leq 15 years

City of Biggs FSP: Asset Inventory

Table 2. Assets for City of Biggs WWTP and Land Disposal System Improvements

System	Asset	Material	Size	Quantity	Year of Install	Expected Life (yrs)	Remaining Life (yrs)
Effluent Pipeline "A"	16" Butterfly Valve	Cast Iron	16"	2	2019	35	35
Effluent Pipeline "A"	16" PVC Pipe*	DR-25 PVC	16" dia.; 220' length	1	2019	40	40
Effluent Pipeline "B"	12" Butterfly Valve	Cast Iron	12"	2	2019	35	35
Effluent Pipeline "B"	Air Release Valve	Cast Iron	1"	1	2019	35	35
Effluent Pipeline "B"	12" PVC Pipe*	C900 DR-25 PVC	12" dia.; 3170' length	1	2019	40	40
Effluent Pipeline "B"	10" HDPE Pipe*	DR-17 HDPE	10" dia.; 220' length	1	2019	40	40
Effluent Pump Station	Pressure Gauge Assembly	-	-	3	2019	15	15
Effluent Pump Station	Submersible Pump*	Cast Iron	10 hp	3	2019	15	15
Effluent Pump Station	Magnetic Flow Meter	-	8"	1	2019	20	20

City of Biggs FSP: Asset Categories (System)

- System Types
 - Effluent Pipeline "A"
 - Effluent Pipeline "B"
 - Effluent Pump Station
 - Headworks
 - Irrigation System
 - Tailwater Collection System
 - Treatment System

City of Biggs FSP: Costs

- 0&M
- Debt Service
- Asset Replacement

City of Biggs FSP: O&M Costs

Table 3. Estimated Annual O&M Cost for City of Biggs Wastewater Program

Cost Category	Estimate
Personnel (salary, benefits, payroll tax, insurance, training, etc.)	\$73,000
Insurance	\$3,000
Energy Costs (fuel and electrical)	\$15,000
Process Chemical	\$36,000
Monitoring and Testing	\$45,000
Professional Services	\$20,000
Residuals/Waste Disposal	\$5,000
Other	\$15,000
Total	\$212,000

* Source: Bennett 2019

City of Biggs FSP: Debt Service Costs

Table 4. Biggs Current Debt Service

Funding Source	Principal Balance as of July 1, 2018	Principal Balance as of June 30, 2019	Principal Forgiveness	Annual Principal Due1	Interest Paid in 2019 ¹	Annual Interest Rate ^{2,3}	Remaining Term (years)⁴
USDA Loan	\$352,600	\$342,700	\$0	\$9,900	\$15,954.75	4.5%	34
USDA Loan	\$118,100	\$114,800	\$0	\$3,300	\$5,334.75	4.5%	34
USDA Loan	\$91,100	\$88,100	\$0	\$3,000	\$2,980.25	3.3%	29
State Water Board CWSRF Loan	\$2,775,720	\$2,713,346	\$1,448,672	\$62,375	\$28,297.11	2.1%	20

City of Biggs FSP: Asset Replacement Costs

Table 6. Estimated Asset Replacement Costs

System	Asset	Quantity	Remaining Life (yrs)	Unit Replacement Cost	Total Replacement Cost
Effluent Pipeline "A"	16" Butterfly Valve	2	35	\$50,700	\$101,400
Effluent Pipeline "A"	16" PVC Pipe	1	40	\$137,100	\$137,100
Effluent Pipeline "B"	12" Butterfly Valve	2	35	\$33,800	\$67,600
Effluent Pipeline "B"	Air Release Valve	1	35	\$4,300	\$4,300
Effluent Pipeline "B"	12" PVC Pipe	1	40	\$1,560,000	\$1,560,000
Effluent Pipeline "B"	10" HDPE Pipe	1	40	\$285,800	\$285,800
Effluent Pump Station	Pressure Gauge Assembly	3	15	\$7,100	\$21,300
Effluent Pump Station	Submersible Pump	3	15	\$233,700	\$701,100
Effluent Pump Station	Magnetic Flow Meter	1	20	\$27,100	\$27,100
	Chamitael Davie - Contant	4	20	Ć00 400	600 400

City of Biggs FSP: Asset Replacement Schedule

Table 5. Asset Replacement Schedule

Year of Replacement	Assets to be Replaced	Total Replacement Cost
2030	 150kW Generator (\$124,700) Influent Pump (\$378,600) MCC-100 (\$381,800) Pressure Gauge Assembly (\$21,300) 	\$906,400
2034	 Irrigation Pump (\$155,800) Pressure Gauge Assembly (\$21,300) Recycle Pumps (\$218,200) Submersible Pump (\$701,100) Tailwater Pump (\$116,900) 	\$1,213,300
2035	 6' Chain Link Fence (\$207,300) Magnetic Flow Meter (\$27,100) Pipe Supports (\$11,100) 	\$245,500
2039	 Chemical Dosing System (\$90,400) Magnetic Flow Meter (\$27,100) Pipe Supports (\$116,000) 	\$233,500
2040	 Davit Crane (\$7,800) 	\$7,800

City of Biggs FSP: Current Revenue

Table 7. City of Biggs Sewer Fees and Revenue

Customer Sector	# of Customers (2019)	Total Monthly Sewer Fee/ Customer	Total Annual Revenue/Sector
Residential/Apartment	673	\$74.40	\$600,854
Tavern or Bar	1	\$94.76	\$1,137
Beauty Salon at Home	2	\$82.61	\$1,983
Churches and Halls	3	\$76.63	\$2,759
Commercial	12	\$90.61	\$13,048
Wild Rice Mill	1	\$74.40	\$893
Specialty Rice Mill	1	\$115.23	\$1,383
Sunwest Main Rice Mill	1	\$318.89	\$3,827

City of Biggs FSP: Funding Plan

Table 8. Funding Plan Estimate

Year	Starting Balance	Revenue	O&M Expenses ¹	Replacement Expenses	Total Debt Obligations	Remaining Balance ²
2020	\$-	\$643,674	\$217,845	\$-	\$159,130	\$266,699
2021	\$266,699	\$643,674	\$224,380	\$-	\$157,125	\$528,867
2022	\$528,867	\$643,674	\$231,112	\$-	\$155,120	\$786,309
2023	\$786,309	\$643,674	\$238,045	\$-	\$153,115	\$1,038,823
2024	\$1,038,823	\$643,674	\$245,186	\$-	\$151,110	\$1,286,201
2025	\$1,286,201	\$643,674	\$252,542	\$-	\$149,105	\$1,528,228
2026	\$1,528,228	\$643,674	\$260,118	\$-	\$147,100	\$1,764,683
2027	\$1,764,683	\$643,674	\$267,922	\$-	\$145,095	\$1,995,341
2028	\$1,995,341	\$643,674	\$275,960	\$-	\$143,089	\$2,219,965
2029	\$2,219,965	\$643,674	\$284,238	\$-	\$141,084	\$2,438,316
2030	\$2,438,316	\$643,674	\$292,765	\$906,400	\$139,079	\$1,743,745
2031	\$1,743,745	\$643,674	\$301,548	\$-	\$137,074	\$1,948,796

City of Biggs FSP: Funding Plan

2043	\$2,203,173	\$643,674	\$429,936	\$-	\$23,786	\$2,393,125
2044	\$2,393,125	\$643,674	\$442,834	\$8,400	\$23,090	\$2,562,474
2045	\$2,562,474	\$643,674	\$456,119	\$920,000	\$22,395	\$1,807,633
2046	\$1,807,633	\$643,674	\$469,803	\$-	\$21,700	\$1,959,804
2047	\$1,959,804	\$643,674	\$483,897	\$-	\$21,005	\$2,098,576
2048	\$2,098,576	\$643,674	\$498,414	\$-	\$20,310	\$2,223,526
2049	\$2,223,526	\$643,674	\$513,366	\$3,400	\$17,715	\$2,332,719
2050	\$2,332,719	\$643,674	\$528,767	\$1,120,900	\$15,982	\$1,310,744
2051	\$1,310,744	\$643,674	\$544,630	\$-	\$15,385	\$1,394,403
2052	\$1,394,403	\$643,674	\$560,969	\$-	\$14,788	\$1,462,321
2053 ³	\$1,462,321	\$643,674	\$577,798	\$1,213,300	\$14,190	\$300,706
2054	\$300,706	\$643,674	\$595,132	\$1,463,500	\$9,093	\$(1,123,346)
2055	\$(1,123,346)	\$643,674	\$612,986	\$1,917,100	\$-	\$(3,009,758)

City of Biggs FSP: Water & Energy Conservation

- Energy Conservation
 - Pumps are appropriately sized
 - Variable frequency drives for pumps
 - Supervisory Control and Data Acquisition (SCADA) software
- Water Conservation
 - Use treated WW to irrigate cropland (rather than potable)
 - o SCADA

Questions?

Asset Management: What's Next?

Tracking Progress & Adaptive Management

- Review and Update
 - o Assets
 - Asset Characteristics
 - LOS goals
 - Life Cycle Costs
 - Funding/Financing Plan

Getting Advanced

- Energy Management
- Water Efficiency
- Climate Change
- Regional Planning/Collaboration
- Multi-Sector Coordination

Getting Advanced: Future Training

- Techniques & tools for developing/updating asset inventories & maps
- Setting & measuring level of service goals
- Using data to assess POF & COF
- Prioritizing projects based on risk analysis
- Using risk analysis to make AM decisions
- Funding & creating a CIP

Resources

- Technical Assistance
 - www.efcnetwork.org/get-help/
 - <u>www.efc.csus.edu</u>
 - <u>Maureen.Kerner@owp.csus.edu</u>
- EPA Guidance
 - <u>https://www.epa.gov/sustainable-water-infrastructure/asset-</u> management-programs-stormwater-and-wastewater-systems

References

- Southwest Environmental Finance Center (SW EFC 2022). <u>A.M. KAN Work An Asset</u> <u>Management and Energy Efficiency Manual.</u> Accessed 2022.
- U.S. Environmental Protection Agency (USEPA 2020). Sustainable Water Infrastructure: Asset Management for Water and Wastewater Utilities. Accessed March 2020.
- US. Environmental Protection Agency (USEPA undated). Asset Management 101. undated.