# Water Conservation Showcase

MARCH 21 | SAN FRANCISCO

The Water/Energy Nexus: Lessons from Southern California

> JOIN THE CONVERSATION ON SOCIAL MEDIA #WCS2019



# The 16<sup>th</sup> Annual Water Conservation Showcase is presented by





Thank you to our Event Sponsors for their support in making this event free to the public

Platinum Sponsor

Gold Sponsor

Silver Sponsor



STOPWASTE at home • at work • at school







# **Continuing Education**

► USGBC GBCI

AIA

- LEED Professionals may self-report 9 continuing education hours.
- Log into your usgbc.org profile
- Report course number: 920018815







# Energy Use Effects of Water Conservation and Local Supplies in Los Angeles

# Erik Porse, PhD

Office of Water Programs at Sacramento State UCLA Institute of the Environment and Sustainability

> March 21, 2019 PGE 2019 Water Conservation Showcase





# Water-Energy Nexus

Studying relationships between energy and water for human needs

- Energy-for-Water
- Water-for-Energy
- Why do we care?
  - Greenhouse gases (GHGs), cost savings, "averted" costs

#### ▶ In California:

- California Energy Commission report (2005), California Public Utilities Commission decisions & reports (2007-2016)
- 2016: SB 1425 established a voluntary Water-Energy Nexus Registry to track GHGs

# Systems Analysis: The Big Picture



time when the old fellow miraculously survived some big forest fire."

# Water Conservation and Local Supply in LA: Changing a System



Opening of the Los Angeles Aqueduct, 1913. Source: waterandpower.org



# Modeling Water Management in LA

# 10



#### Artes: A Network Model for Water Management



#### Flexible Objectives and Resolutions: Maximize local supplies, Minimize costs

Porse, E., KB Mika, E Litvak., K Manago, K Naik, M Glickfeld, T Hogue, D Pataki, M Gold, & S Pincetl (2017).

"Systems Analysis and Optimization of Local Water Supplies in Los Angeles." Journal of Water Resources Planning and Management, 143(9).

#### Artes is a Product of Many Conversations and Collaborations

Stephanie Pincetl Mark Gold Katie Mika Madelyn Glickfeld Felicia Federico Debbie Cheng Dan Cheng Claire Hirashiki Eric Fournier Hannah Gustafson Kartiki Naik

#### <u>UCLA</u>

Elsewhere

Gonzalo Cortes Brianna Pagan Steve Margulis Tom Gillespie Janet Rodriguez Sherry Jia Nick Nobles JR DeShazo Greg Pierce Henry McCann Nick Chow Kelsey Jessup Peter Kareiva Monobina Mukherjee Marcia Hale Paul Cleland Bill Yeh Vanessa Martin Sonali Abraham David Colgan Dennis Lettenmaier Cassie Rauser Rhianna Williams Daniel Swain Alex Hall Katharine Reich Scott Gruber Rob Cudd Sean Kennedy *Keith Mertan* 

Terri Hogue Kim Manago Katharine Radavich Diane Pataki Liza Litvak Dong-ah Choi Youn Sim Lee Alexanderson Daniel Bradbury Grace Chan Delon Kwan Ken Manning

Jay Lund Bill Blomquist Fritz Raffensperger Edith de Guzman Annie Eby Mike Hollis Patrick Atwater Alvar Escriva-Bou Kelly Sanders Heather Cooley Ned Spang Soraya Manzor

# Modeling Energy-for-Water Management in LA

# Estimating Energy-for-Water in LA

### Utilities

- Importing
- Conveying
- Treating
- Gross vs. Net

## Households



#### Imported Sources



## Calculating Results

Apply coefficients to links throughout the network

- Energy = flow \* energy intensity
- Some Issues to consider:
  - Attribution
    - Is energy used by the wholesale or retail agency?
  - Gross vs. Net
    - Total energy use with or without offsets from produced energy
  - Total Energy Use vs. Energy Intensity



| Technology / Water Source                               | Energy Intensity (kWh/acre-foot)           |               |
|---------------------------------------------------------|--------------------------------------------|---------------|
|                                                         | Low                                        | High          |
| <u>Groundwater</u>                                      |                                            |               |
| Pumping                                                 | 580                                        |               |
| Treatment                                               |                                            |               |
| Conventional water treatment                            | 98                                         | 130           |
| Membrane-based water treatment                          | 326                                        | 489           |
| Secondary Treatment without nutrient removal            | 342                                        | 456           |
| Tertiary treatment with nutrient removal and filtration | 521                                        | 635           |
| Membrane Bioreactor (MBR)                               | 740                                        | 2,839         |
| Brackish water desalination                             | 1,010                                      | 2,020         |
| Advanced water treatment                                | 1,059                                      | 1,303         |
| Imported Water                                          |                                            |               |
| Colorado River Aqueduct imported water                  | 2,004                                      | 2,411         |
| State Water Project imported water*                     | 2,581 (4,110)                              | 3,232 (4,520) |
| Conveyance                                              | varies, based on elevation<br>and distance |               |
| Ocean desalination                                      | 3,096                                      | 4,806         |

Sources: Multiple, compiled in Mika et al (2017). Sustainable LA Project: City Wide Overview

\* With and without system hydropower generation

## Inputs: Making Assumptions

Modeling approach to calculate retailer-specific conveyance energy

- Bernoulli's Equation (potential, kinetic, & pressure head)
- Translate to power and energy

Modeling approach in lieu of mapping water pipes and properties



| Parameter               | Value                                                        |
|-------------------------|--------------------------------------------------------------|
| Dynamic head (kinetic)  | (K*v²)/ 2g, assume consistent across systems                 |
| K (loss coefficient)    | 9.95                                                         |
| v (pipe velocity)       | Flow (Q) divided by Pipe Cross-Sectional Area (A)            |
| Pump flow               | 2500 m <sup>3</sup> /sec                                     |
| Static Head (potential) | E1 – E2 (difference in elevation from source to end)         |
| Pressure Energy         | Pipe pressure = 50-60 psi, convert to head (1 psi = 2.31 ft) |
| Power                   | (Q*H*g*d)/pump efficiency                                    |
| d , density of water    | 1000 kg/m3                                                   |
| Pump efficiency         | .85                                                          |



## Results: Utility System Energy Use, by Process

# Total Energy Use vs. Energy Intensity Gross vs. Net Energy Use Net Energy Use accounts for energy produced in system









## Results: Conveyance Energy, by Retailer

Energy needed to pump water through retailer system

- Modeling approach identifies higher conveyance energy needs in retailers with hilly service territories
- Complements dataintensive assessments based on the water distribution network



## Results: Seasonal Differences in Energy Intensity

Summer irrigation demands increase energy intensity
Assumes other operational parameters are constant

Average Monthly Energy Use (Gross vs Net) for Water Supply



Gross Energy Use Intensity, 100% Imported Supplies, December



Gross Energy Use Intensity, 100% Imported Supplies, July



## Results: Household Energy-for-Water Use

## Energy needs for hot water heating in homes

- ▶ 3.2 million households, 2.4 million parcels
- Indoor residential water heating = 268 Million Gallons/day using baseline indoor demands
- Assessed via Water Heater Analysis Model (WHAM) method (natural gas)
- Currently examining <u>electric grid</u> effects of electrifying water heaters

#### LA Energy Atlas: Monthly, Account-level Energy Use



Total Residential Use: ~200Tr BTU/yr

> Residential hot water estimate: 42.1 TrBTU/yr or 85,827 MW/month ~20% of LA County residential energy use

# Future Water Supply Portfolio in LA City

| Source                                | Energy Intensity<br>(kWh/AF) | 2013 Supply<br>Volume (AF) | 2013 Energy<br>Use (GWh) | 2035 Supply<br>Volume (AF) | 2035 Energy<br>Use (GWh) |
|---------------------------------------|------------------------------|----------------------------|--------------------------|----------------------------|--------------------------|
| State Water Project<br>East (MWD/DWP) | 4,110                        | 66,281                     | 272                      | 15,000                     | 62                       |
| State Water Project<br>West (MWD)     | 4,520                        | 309,309                    | 1,398                    | 70,000                     | 316                      |
| Colorado River<br>Aqueduct (MWD)      | 2,000                        | 66,281                     | 133                      | 15,000                     | 30                       |
| Los Angeles<br>Aqueduct (LADWP)       | 0                            | 61,024                     | 0                        | 139,400                    | 0                        |
| Groundwater                           | 580                          | 79,403                     | 46                       | 114100                     | 66                       |
| Recycled Water                        | 1,150                        | 10,054                     | 12                       | 88,500                     | 102                      |
| Stormwater                            | 174                          | 0                          | 0                        | 37,000                     | 6                        |
| Total                                 | -                            | 592,352                    | 1,861                    | 479,000                    | 582                      |

#### Should consider the "full-cycles" of water supply

Source: Mika et al (2017). Sustainable LA Project: City Wide Overview

# Energy Use for "Full Cycles" of Urban Water?

| Sources                                  | Stages to End-Use                                                                                                | Cost (\$/ac-ft) |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|
| Imported Water for Supply                | Capture >> Conveyance >> Local Storage >> Treatment >> Delivery                                                  | \$1476-\$1,790  |
| Imported Water for Recharge              | Capture & Storage >> Conveyance >> Local Storage >><br>Conveyance >> Infiltration                                | \$1,325-\$1,639 |
| Groundwater Pumping                      | Pumping >> Treatment >> Conveyance >> Delivery                                                                   | \$739           |
| Existing Large Stormwater<br>Capture     | Capture >> Filtering & Sedimentation >> Spreading & Infiltration >><br>Pumping >> Treatment >> Delivery          | \$995           |
| Proposed New Large Stormwater<br>Capture | Capture >> Filtering & Sedimentation >> Spreading & Infiltration >><br>Pumping >> Treatment >> Delivery          | \$1,110-\$2,727 |
| Indirect Potable Reuse                   | Sewage Collection and Treatment >> Conveyance >> Spreading &<br>Infiltration >> Pumping >> Treatment >> Delivery | \$1,551-\$2,641 |
| Non-Potable Reuse                        | Sewage Collection and Treatment (tertiary and disinfection) >><br>Conveyance >> Delivery (irrigation, CII)       | \$556-\$1,646   |
| Direct Potable Reuse                     | Sewage Collection and Treatment >> Conveyance >> Delivery                                                        | -               |

Source: Porse et al (2018). "The Economic Value of Local Water Supplies in Los Angeles". Nature Sustainability

## Some Insights

- Cutting imported water could save energy
- In-home energy-for-water use is much larger than utility operations
- Electrifying natural gas water heaters could reduce GHGs
- Need systems thinking to address energy-for-water planning



Switching to electric appliances improves public health and safety, can save money, and helps fight climate change too. It's one of the strategies our Mayors' Commission on Climate Change is pursuing @TheCityofSac and @cityofwestsac.



Converting buildings from gas to electric crucial to fighting climate... engagesac.org

M

16:26 · 3/19/19 · Twitter Web Client

Tweet your reply

## Links

#### LA Water Hub

http://waterhub.ucla.edu

Artes Source Code and Data

https://erikporse.github.io/artes/

LA Energy Atlas

http://energyatlas.ucla.edu

<u>Contact</u>

erik.porse@owp.csus.edu @researchcp







# **Continuing Education**

► USGBC GBCI

AIA

- LEED Professionals may self-report 9 continuing education hours.
- Log into your usgbc.org profile
- Report course number: 920018815





